
Journal of Statistical Physics, Vol. 55, Nos. 1/2, 1989 

Covering by Random Intervals 
and One-Dimensional Continuum Percolation 

Cyril Domb 1'2 

Received Map" 18, 1988; revision received November 8, 1988 

A brief historical introduction is given to the problem of covering a line by 
random overlapping intervals. The problem for equal intervals was first solved 
by Whitworth in the 1890s. A brief resume is given of his solution. The advan- 
tages of the present author's approach, which uses a Poisson process, are out- 
lined, and a solution is derived by Laplace transforms. The method of Hammer- 
sley for dealing with a stochastic distribution of intervals is described, and a 
solution can still be derived by Laplace transforms. The asymptotic behavior as 
the line becomes long is calculated and is related to the one-dimensional con- 
tinuum percolation problem. It is shown that as long as the mean interval size 
is finite, the probability of complete coverage decays exponentially, so that the 
critical percolation probability Pc = 1. However, as soon as the mean interval 
size becomes infinite, the critical percolation probability Pc switches to 0. This 
is in accord with previous results for a lattice model by Chinese workers, but 
differs from those of Schulman. A possible reason for the discrepancy is a 
difference in boundary conditions. 

KEY W O R D S :  Continuum percolation; random intervals. 

1. HISTORICAL INTRODUCTION 

For several years during World War 2, I was engaged in radar research for 
the Admiralty, and was concerned (among other things) with the theory of 
Poisson processes and random noise. When I returned to Cambridge in 
1946 to take up a postgraduate appointment, I brought with me a theoreti- 
cal problem which had been stimulated by work in this area. Suppose each 
event in a Poisson process is the left-hand end of an interval z. Choose any 
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section [0, y] of the line. What is the probability z(y) that the section is 
completely covered? I found that this problem could be solved simply and 
neatly using Laplace transforms. 

I needed to know whether anyone had tackled the problem previously, 
and Herman Bondi (who had been one of my colleagues at the Admiralty) 
referred me to Harold Jeffreys, whom he described as a mine of informa- 
tion on miscellaneous mathematical problems. Jeffreys immediately 
thought of the "bicycle wheel problem" which he himself had formulated a 
few years previously as follows: A man is cycling along a road and passes 
through a region strewn with tacks; he wishes to know whether one has 
entered his tire. Because of the traffic, he can only snatch glances at 
random times. At each glance he covers a fraction x of the wheel. What is 
the probability that after n glances he has covered the whole wheel? In 
mathematical terminology: n intervals are placed randomly on a circle, 
each covering a fraction x of the circle. What is the probability that the 
circle is completely covered? (Fig. 1). 

Jeffrey's drew my attention to a paper published by W. L. Stevens in 
1939 in the Annals of Eugenics, (~) entitled, "Solution to a Geometrical 
Problem in Probability," in which his problem was solved. Using a neat 
combinatorial argument, Stevens found for the probability F(0) of com- 
plete coverage 

F ( 0 ) = l - ( 7 ) ( 1 - - x )  n l + ( ~ ) ( l _ 2 x ) . - l _ ( ~ ) ( l _ 3 x )  " -~ . . .  (1, 

the series terminating at the kth term, k being the integral part of 1/x. 
Stevens also derived a formula for F(i), the probability that there are i gaps 
on the circle. 

/ 

F ~  

J 

Fig. 1. The bicycle wheel problem. 
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In 1929, R. A. Fisher published an article ~2) entitled, "Tests of 
significance in harmonic analysis," in which he calculated the probability 
that the largest interval in the random division of a circle is less than x 
(Fig. 2). When Steven's solution for F(0) appeared, Fisher noted that it 
was identical with his, and a moment's reflection is enough to convince one 
that the two problems are identical. Fisher pointed this out in a note 
published in 1940. ~3) 

But surprisingly, Fisher, one of the founders of the modern theory of 
statistics, was unaware that the distribution of length of the largest interval 
in the random division of a line had been correctly solved by Whitworth 
many years before, and was reproduced in his classic book, Choice and 
Chance (solutions to problems 666 and 667 published in t897). 

Problem 666: A line of length c is divided into n segments by n -  1 
random points. Find the chance that no segment is less than a given length 
a, where c > na (say, c -  na = ma). 

Problem 667: In the last question find the chance that r of the 
segments shall be less than a and n - r  greater than a. 

More precise dating of the solutions will be discussed in the next 
section. 

My own contribution, ~5) in 1947, was to deal with the problem as I 
had formulated it in relation to a Poisson process, and to derive an integral 
equation which could be solved by Laplace transforms. I was able to find 
closed-form solutions for z(y), the probability that a section [0, y ]  of the 
line is completely covered; zk(y), the probability that it contains k gaps; 
and W(x, y )dx ;  the probability that the covered portion of the line is 

Fig. 2. Random division of a circle. 
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between x and x + dx. Deriving a solution for a Poisson process with a 
random parameter 2 (the probability of an event occurring in Ix, x + dx] 
being 2 dx) is similar to using a grand partition function in statistical 
mechanics; the solution for fixed n can then be derived from it by picking 
out the nth term in a suitable expansion. 

The Laplace transform solution has the advantage that asymptotic 
behavior for large y can be calculated by a standard procedure, whereas it 
is much more difficult to handle a combinatorial formula like (1). 

At about this time there was considerable interest in the statistics of 
particle counters with a finite resolution time z. Events are divided into two 
classes, recorded and unrecorded. A recorded event is followed by a dead 
interval during which any other event which occurs will be unrecorded. A 
typical example is an ~-particle counter; a recorded particle causes the 
chamber to ionize, and no other particle can be recorded until the chamber 
has deionized. This is a different problem from that considered above and 
will be called a type 1 counter (Fig. 3a); probability distributions of 
recorded events can also be solved readily by Laplace transforms. ~6) But an 
alternative type of recorder, relevant, for example, to blood counts, remains 
dead as long as events follow one another at intervals less than r. This 
recorder (type 2, Fig. 3b) gives rise to problems very similar to those 
considered above in relation to the covering of a line or circle. 

In considering the statistics of a blood cell counter, Hammersley 
generalized this latter problem to the case of a stochastic distribution 
of intervals u( r )dr ,  and showed how to overcome mathematical difficulties 
which arise because an interval associated with an event can completely 
cover the interval associated with an event which follows it. Subsequently, 
Smith ~s) demonstrated that renewal theory could be effectively applied to 
the problem; he was able to simplify Hammersley's arguments, and to 

(a) 

II I I I IJ 
(b) 

I I [  [I I rJ 
Fig. 3. (a) Type 1 counter, which does not  function during the "dead" time following a 
recorded event. All recorded events have the same length. (b) Type 2 counter. Events can 
overlap and recorded events have different lengths. 
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remove a restriction which Hammersley had imposed that the distribution 
u(v) dz must be bounded. Both Hammersley and Smith were concerned 
with the mean, mean square, and asymptotic forms of the distribution of 
recorded events. 

Other aspects of the covering problem for equal intervals were dis- 
cussed by Flatto and Konheim, (9) including the expected number of inter- 
vals just needed to cover the circle. These authors refer to "a vast body of 
literature" relating to the problem, but do not give information which 
could give the reader access to this literature. In the present survey I do not 
attempt to provide an exhaustive list of papers on the topic, but hope to 
draw attention to a restricted list of publications from which anyone 
interested can trace the relevant literature. 

A new question first raised by Dvoretsky (1~ was that of covering a 
circle by n intervals whose length ~, depends on n. How rapidly could v, 
decay to zero if the probability of covering the circle was still to remain 
unity? Further work on this topic (together with references to the 
literature) is contained in a paper by Shepp. (11) 

Percolation processes were first introduced by Broadbent and 
Hammersley (12) in 1957, but no one realized that the overlapping-intervals 
problem was precisely the problem of continuum percolation in one dimen- 
sion. When 24 years later Shalitin (13) published a discussion of one-dimen- 
sional continuum percolation, he was, not surprisingly, unaware of the 
above literature, whose discussion had taken place in a different context. 

Shalitin was concerned with equal intervals. An interesting question 
which attracted much attention subsequently is that of a stochastic dis- 
tribution u(r) dv with a long tail to infinity. How slow must this decay be 
to ensure a critical percolation probability Pc different from 1, the value for 
a short-range decay? Lattice models of this problem were considered by 
Zhang et a/., (14) Schulman, ~5) Newman and Schulman, ~t6) and Aizenman 
and Newman, (17) who concluded that in a power law decay of the form 
u ( r ) ~ ~  s, p c =  1 for s > 2 ,  p c <  1 for s < 2 ,  and that the marginal case s = 2  
needs special attention. One would not a priori expect a significant 
difference in this case between lattice and continuum models. However, we 
shall see that the matter does require closer examination. 

The methods used by workers in percolation theory differ from those 
used by the earlier statistical authors. It is the aim of the present paper to 
show that the approach used previously by Domb ~5) and Hammersley ~7) 
provides an alternative method of dealing with percolation problems, and 
can give rise to interesting new results. I shall also endeavor to explain a 
discrepancy between the conclusions of Zhang et al., (14) and those of 
Schulman. (tS) 
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2. W H I T W O R T H ' S  CHOICE AND CHANCE 

I will preface this section with a few biographical details relating to 
Whitworth, ~18~ and will continue with some comments on the different 
editions of his famous publication, Choice and Chance. 

William Allen Whitworth was born in 1840, and entered St. John's 
College as an undergraduate in October 1958. His performance in the 
Mathematics Tripos was not distinguished--he was 16th wrangler in 
1862--but  this does not seem to have represented his true ability. While 
still an undergraduate he was principal editor of the Oxford, Cambridge, 
and Dublin Messenger of Mathematics, started at Cambridge in November  
1861. The publication was continued as The Messenger of Mathematics; 
Whitworth remained one of the editors till 1880, and was a frequent 
contributor. 

After leaving Cambridge in 1862 he was successively chief mathematics 
master at Portarl ington School and Rossal School, and professor of mathe- 
matics at Queen's College, Liverpool (1862-1864); he was a fellow of 
St. John's College from 1867 to 1882. At the same time Whitworth followed 
a second career of distinction in the Church, being ordained deacon in 
1865 and priest in 1866. He held appointments as a curate at three 
churches in Liverpool from 1865 to 1875, and as vicar of two churches in 
London from 1875 until his death in 1905. 

The first edition of Choice and Chance was published in 1867 while he 
was in Liverpool, and was a reproduction of lectures given to ladies in 
Queen's College Liverpool in the Michaelmas term of 1866. The book was 
subitled Two chapters of Arithmetic, and its aims, as described in the 
Preface, were modest  enough: 

I had already discovered that the usual method of treating questions of selection 
and arrangement was capable of modification and so great simplification, that 
the subject might be placed on a purely arithmetical basis; and I deemed that 
nothing would better serve to furnish the exercise which I desired for my classes, 
and to elicit and encourage a habit of exact reasoning, than to set before them, 
and establish as an application of arithmetic, the principles on which such 
questions of "choice and chance" might be solved 

He expressed the hope that this pubication might be of service "in conduc- 
ing to a more thoughtful study of arithmetic than is common at present; 
extending the perception and recognition of the important  truth, that 
arithmetic, or the art of counting, demands no more science than good and 
exact common sense." 

Chapter  1 was devoted to "Choice," and was followed by 24 questions; 
Chapter  2 to "Chance," followed by 20 questions. The questions were all 
arithmetical in character. An appendix was devoted to "Permutat ions and 
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Combinations Treated Algebraically": "In my experience as a teacher I 
have found the proofs here set forth more intelligible to younger students 
than those given in the text books in common use." Whitworth here 
derived a number of standard elementary combinatorial formulas, and 
ended with a new combinatorial proof of the binomial theorem. 

The second edition, published only 3 years later (1870) from St. John's 
College, Cambridge, added three appendices containing more sophisticated 
material. Appendix II was devoted to "Distributions" (into different groups 
or parcels), Appendix III to "Derangements": "a series of propositions are 
given which are not usually found in text books of algebra. But I can see 
no reason why examples of such simple propositions.., should be excluded 
from elementary treatises in which more complex but essentially less impor- 
tant theorems find place." Appendix IV was concerned with the celebrated 
St. Petersburg problem and its background. More than 100 miscellaneous 
new examples were added. 

In the third edition, published in 1878, the material in the appendices 
was revised and enlarged, and incorporated into the main text. There were 
now four chapters on "Choice" and four chapters on "Chance," the final, 
brief eighth chapter carrying the title, "The Geometrical Representation of 
Chances." The number of examples was increased to 300, and they were 
divided into different classes. The Preface contained the proclamation, 
"Questions requiring the application of the Integral Calculus are not 
included in the book, which only fulfils its title to be an Elementary 
Treatise." 

In the fourth edition, published in 1886, the number of examples grew 
to 640, and a new chapter in the "Choice" section was added dealing with 
problems where the order in which gains and losses occur is relevant, e.g., 
if there is a condition that losses must never exceed gains. A short addi- 
tional chapter in the "Chance" section entitled, "The Rule of Succession," 
was devoted to a precise treatment of situations in which the probability of 
an event is supposed completely unknown, but the results of a number of 
trials are available. What can now be predicted about future trials? 

The fifth and final edition was not published until 1901. But in 1897 
there appeared a volume entitled, DCC Exercises in Choice and Chance, 
which provided fairly detailed solutions to the 640 examples of the fourth 
edition, and to 60 new examples, several of which were concerned with the 
random division of a line by a number of points. Questions 666 and 667, 
which were quoted in the previous section, are included among the latter. 
The preface to the fifth edition, which now contained 1000 examples, 
described the new category as follows: "A new feature will be recognized in 
a class of problems which found scarcely any place in former editions; the 
class which includes investigations into the mean value of the largest part, 

822/55/1-2-29 
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(or the smallest, or any other in order of magnitude) or of functons of such 
a part, when a magnitude is divided at random." 

It is clear that Whitworth was actively working on this type of 
problem at the time. Quoting again from the same preface, "The most 
important addition in the body of the work is the very far-reaching 
theorem.., which enables us to write down at sight the mean value of such 
functions as ~3, ~3/34 ' ~f17 etc. when c~, fl, 7,--- are the parts into which a 
given magnitude is divided at random. I first published this theorem in a 
pamphlet in the year 1898." The calculations of quantities of this type given 
in the DCC Exercises volume did not make use of the theorem, and were 
much longer. 

From the above discussion it is clear that the problem with which we 
are concerned was tackled by Whitworth at some date between 1886 and 
1897, most probably close to the latter date. 

A surprising feature of the final two volumes is the lack of apprecia- 
tion of the power of the method of generating functions (g.f.'s). Standard 
formulas like 

which are trivially established by g.f.'s, are proved by a combinatorial 
analysis of the terms on each side of the equation. 

3. W H I T W O R T H ' S  S O L U T I O N  

Whitworth divided the line into a number of discrete segments, which 
would eventually be allowed to become very large. He then used standard 
combinatorial formulas which he had developed in the text to enumerate 
various cases outlined in examples 666 and 667 (see Section 1 of the 
present paper). 

I shall retain Whitworth's notation for historical reasons, but shall find 
it convenient to use generating functions to reproduce his combinatorial 
formulas. Whitworth assumed that the line of length c was divided into coc 
equal elements. The given length a would then contain coa elements. Take 
a dummy variable xl to enumerate the possible configurations of the first 
segment, Xz the second segment,..., xn the nth segment. Then the g.f. which 
enumerates all configurations in any division of the line by n -  1 points is 

F(t, x t ,  x2 ..... x , ) =  (tXl + tZx 2+ ...)(tx2 + tZx 2+ ...) . . .  ( tx ,  + t2x 2+ -..) 

(3) 
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assuming no two points are identical. The total number of segments is coc, 
and therefore all possible configurations are enumerated by the coefficient 
of t ~c in F(t;  Xl ..... xn). If we need the total number of configurations, we 
put x l = x 2  . . . .  xn=  1 and find the coefficient of t ~C n in ( l - t )  -n, 
which is 

For  problem 666 one needs to enumerate all configurations with each 
of the segments containing coa or more elements, and Whitworth realized 
that this was identical with finding all possible configurations which divide 
a line of length c - n c o a  into n parts. This is clear from the g.f. approach, 
since the appropriate enumerator is now 

y x ~ a ( I  + t x l  + t2x~, ' '  ") t~~ + tx2 + t2x~ " " ) ' ' "  

x t~ax~a(1 + t X , +  t 2 x 2 +  "" ") (5) 

We therefore require the coefficient of t ~ . . . .  ), i.e., of t . . . .  ( m a =  c - n a )  in 
(1 - t )  ", which is 

( o~ma + n - 1 )  ( eoma + n - 1 ) (  coma + n - 2 ) . . . ( c~ma + l ) 

n -  1 = ( n -  1)! (6) 

Hence the probability that no segment is less than a is found by taking the 
quotient of (6) by (4) and is equal to 

(~rna + n - 1)(ooma + n -  2) . . -  (ooma + 1) 
(7) 

(coc-  1 ) ( t o e - 2 ) . . .  ( r  + 1) 

When ~o increases indefinitely, this reduces to 

(male)  " -1  (8) 

For  example 667, Whitworth pointed out that all orders of choice of 
the r segments less than a, and the n -  r segments greater than a, give rise 
to the same number of configurations, and we can therefore deal with the 
case in which the r segments are at the beginning and the n -  r at the end, 
and multiply by (~). The enumerating g.f. is then 

- ~ o a - -  1 m a - -  1 ) . . . ( t x l + t 2 x ~ + ' " t ~  ~ 1 ) ( t x 2 + t 2 x 2 + ' " t  x2 

2 2 t . . . .  ~ ~ - ~ ) t ~ x ~  t 1 t2x  2 x ( t x ~ + t  x ~ +  . . .  x ,  ~+l~ + t x ~ + l +  ~+1"")  

• t~176 ..-) (9) 
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The total number of configurations is the coefficient of 

(1 - t ~ - l )  r 
(1--t)--~"--r)=(1--t~ (1--t) " (10) 

( 1 - - t )  r 

Expanding the first factor by the binomial theorem, we derive the series 

(n+~o(m+r)a-r+l)n_l - (~)(n+og(rn+r-1)a-r)n_l 

+(~)(n+o)(m+r-2)a-r+X)...n_l 

In the limit of very large e) this simplifies very considerably; dividing by (4) 
and taking the limit, we obtain 

( m + r ) n  1 ( r n + r z  - i  (m_+_rs2)n-, 
m+nJ - - ( 7 )  1) n + ( ~ )  ' "  \ m+n \ m+n / 

. s / m + r - s \  n 1 ( m ) n-t  
+ ( - 1 )  ~. m--+n ) + . . . ( - 1 )  r ~ (12) 

Expression (12) must be multiplied by (~) to obtain the complete solution. 
Although (11) looks complicated, the g.f. (10) from which it is derived 

is quite simple, and the calculation of averages and higher moments can be 
undertaken by standard routine. 

The probability of complete coverage, with which we have been 
concerned, corresponds to r = n, and is given by 

+ ,  ) 
(13)  

the series terminating at the last term before c -  sa becomes negative. 
The solutions given above are the same as those derived later by 

Fisher ~2) and Stevens,(1) with the slight adaptation needed for a problem on 
a circle rather than on a line. 

4. USE OF A POISSON PROCESS: EQUAL INTERVALS 

The problem to be considered is the following (Fig. 4). 
Events occur at random on a line in a Poisson distribution, the 

probability of an occurrence in It, t+dt] being 2 dt. Each event is the 
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Fig. 4. 
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Random intervals on a line. 
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left-hand end of an interval ~. Choose any section [0, y ]  of the line. 
Calculate the probability z(y) that the section is completely covered. 

We divide z(y) into mutually exclusive classes z(y, 4) in which the last 
event occurred between y - ~  and y - ~ - d ~ .  Then if y > ~, ~ cannot be 
greater than ~ or the section [0, y ]  would not be covered. Also, z(y, ~) can 
be decomposed into three independent contributions: (i) No event occurs 
in [ y -  ~, y ] ;  (ii) an event occurs in [ y -  ~ -  d~, y -  ~]; (iii) the section 
[0, y - ~ ]  is covered. Hence, we deduce that 

z(y) = z(y, ~) d~ = 2e )~r - ~) d~ (y > 'r)  (14) 

If y ~< r, we must take into account the additional possibility that an 
event occurs in [ y -  v, 0], and we easily find that 

z ( y ) = f o 2 e - ; ~ r 1 6 2  +e "~Y-e -'~ (y<<.'c) (15) 

Taking Laplace transforms in y in (14) and (15), we derive for the Laplace 
transform Z(p) of z(y), 

p( l_e-X~)_)~e-~.~( l_e  p~) 
Z ( p ) =  p + ).e_(p +~.) ~ (16) 

If the denominator is expanded as [ 1 + (2/p)e- (p + ;~)~]- 1 and the terms are 
interpreted individually, the combinatorial solution is obtained. If further 
the solution is broken down into mutually exclusive classes in which 
exactly n events occur in [0, y] ,  the identity 

An 
z ( y ) =  ~ ~e- ; ' f~ (y )  

n=0 
(17) 

can be deduced, where f , ( y )  is the probability for n events. In this way the 
solution of Whitworth, Fisher, and Stevens can be simply derived. 

But if we are interested in large y/z, the asymptotic behavior of z(y) 
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is determined by the zeros of the denominator of (16), i.e., by solutions 
-7~ of 

qq-fle-(#+q)=o (q=pz, fl=2z) (18) 

There is only one real root, --7, which dominates the asymptotic behavior, 
the complex roots providing transients which rapidly decay. 7 is the 
solution other than fl of the equation 

xe-X=fle ~ (19) 

(see Fig. 5). We then find the asymptotic solution 

z(y) e-l~(fl-7)e-eV (y=vz)  (20) 
7(1 - 7 )  

When fl is large (high density of events), 7 is small, and when fl is small, 
7 is large. The probability of an infinite cluster in a one-dimensional per- 
colating system is zero; Eq. (20) describes the approach to zero as a finite 
system grows large. 

The calculation for zk(y) follows similar lines. The integral equation is 
n o w  

zk(y) = 2e-~zk(y--  ~) d~ (~ <~ ~) 
(21) 

Zk(y ) = 2e ~r k_ I(Y -- 4) d~ (4 > z) 

with special treatment for k = 1. Taking Laplace transforms, we find 

2e-T(p+,~) { 2e-T(p+,~) ~k i 
Zk(P)--p+ 2e_~(p+;.)Zk-i(p)= \ p +  2e_~(p+;.)j ZI(p)  (22) 

f ,y" 
Fig. 5. Solution of xe ~= fie -~ giving asymptotic decay. 
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From this it can be deduced that the asymptotic distribution of clusters is 
normal with mean vile -~ and variance rifle - t~ -  2/~2e-2~]. 

The calculation W(x, y) dx is more complicated, and the distribution 
contains 6-function terms corresponding to various discrete probabilities. 
The moments of the distribution can be calculated in a straightforward 
manner. For  example, 

( x ) =  y ( 1 - e  -~) 

( X  2 ) = y 2 ( 1  - -  e -~) -- e /~(y2 _ 2y/2 + 2/22) (23) 

+ e -2#[ (y  _ z)2 _ 2(y -- z)/2 + 222 ] 

5. S T O C H A S T I C  D I S T R I B U T I O N  OF I N T E R V A L S  

When the intervals are not all equal the previous method breaks down 
because an early event can overlap a later one (Fig. 6). The behavior at the 
point y is no longer dependent only on the latest event at y - 4 1 ,  but all 
previous events at y - 4 1 ,  y - 4 1 -  42,..., must be considered. The way in 
which to deal with this new situation was demonstrated by Hammersley, (7~ 
who was interested in the statistics of blood cell counters; I shall adapt his 
method to the percolation problem (for a renewal theory approach see 
Smith. (8) 

Assume a probability distribution of intervals u(z) dr, and divide z(y)  
into mutually exclusive classes as follows: 

z ( y ) = z ( y ; r  ... +zo(y)  (24) 

where z(y; ~1) represents the class in which the point y is covered by the 
last event at y -  41, z(y; ~1, 42) represents the class in which the point is 
not covered by the last event at y -  41, but is covered by the last but one 
at y - 4 1 -  42; z(y; 4~, 42, 43) represents the class in which the point y is 
not covered by the last two events, but is covered by the last but two at 

Fig. 6. The first event overlaps the next two. 
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Y--~1--~2--~3; zo(Y) represents the class in which no covering event 
occurs in [0, y ]  but the point y is covered by an event occurring before. 
Write 

U(z) = u(t) dt (25) 

which represents the probability of an interval of length ~<v; 1 - U(z) then 
represents the probability of an interval >v. It is easy to derive the 
following relations (Fig. 6): 

z ( y ;~ l )=IY2e -~r  ( 0 < ~ , < y )  

z(y; ~1, ~2)= f~ 2e ~e'U(~) d~l 2e-~r - U(~l + ~2)] d~2 

•  ~1--~2) (O<~t, ~2<y, ~ l+~2<Y)  

z(y; ~1, ~2, ~2) = fir 2e-~r d~l 2e-~r d~2 2e 2~3 

x [ 1 -  U(~1+~2+~3)]  d ~ 3 z ( Y - ~ , - ~ 2 - ~ 3 )  

(0<~1, ~2, ~3<y  , ~1+~2+~3<y)  (26) 

To see the structure of these relations, it is convenient to transform to 
new variables, 

01 = ~ 1 '  q2 = ~1 + r 03 = ~1 + ~2 + ~3 .... (27) 

so that the limits of integration in the new variables are 

0<01<~ /2<03" ' "  <Y (28) 

We then find 

-- fo y 2e-;-~1 [1 -- U(~]I)] z(y - -  ~I) d01 z(y~ ) 01 

z(y; Ol , 02) = f~ 22 U(~l) dOl e-)~2[1- g(02) ] z(y - q2) d02 (29) 

z(y; 01, 02, 03) --- f f f  23 U(q,) d0, U(02) d02 e-;~"3[ -1 - U(q3)] z(y - 03) d03 

The integration in 0~ in 2(y, 0s, I/2) yields a function of q2. Similarly, the 
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integrations of r/~, r/2 in z(y;r/1, r/2, r/3) yield a function of r/3. The structure 
of Eq. (24) is therefore 

z(y)  = fo  v(r/) z (y  - r/) dr/+ zo(y) (30) 

which is still of the form amenable to Laplace transforms. The function v(q) 
can be calculated by summing the successive contributions in (29). 

However, I shall use a shortcut to evaluating v(r/) by considering a 
related problem, the probability #(y) that the point y is covered by an 
event occurring in [0, y].  We can decompose #(y) in a similar manner 
to (24)-(29) and we obtain the same integrals without the z(y-r/) 
factors, i.e., 

((y) = v(r/) dr/ (31) 

But the probability 1 - ~ ( y )  that the point y is not covered by an 
event occurring in [0, y ]  was calculated in an elementary manner by 
Hammersley (7) to be 

expl-2y+ 2 fYo U(t)dt ] (32) 

The derivation is straightforward. Let us call an event which occurs in 
[0, y]  and covers the point y a covering event. The probability that a 
covering event does not occur in the interval [ y -  ~ -  d~, y -  ~] is 

exp{-211  - U(~)] d~} (33) 

But all such intervals from ~ = 0  to ~ = y  are independent. Hence the 
probability that no covering event occurs in [0, y]  is the product of factors 
of type (33) from ~ = 0 to ~ = y, and this leads directly to (32). Hence we 
can derive v(y) by differentiating (31 ), 

v(y)=2[exp(-,ty)][1-U(y)]expl)~ fYo U(t)dt] (34) 

On examining (34) and comparing with (28) and (29), it is not 
difficult to see how the formula could be derived directly, the successive 
terms in (29) corresponding to successive terms in the expansion of 
expr  So at]. 
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It is convenient to introduce a function U(y) which is the complement 
of U(y), 

U(y)+ U(y)=  1 (35) 

Relations (32) and (34) assume a simplified form in terms of U(y) as 
follows: 

1 - ~(y) = exp - 2  U(t) dt (36) 

v(y)= 2U(y)exp {2 [ f ~ @(t) dt]} (37) 

For a distribution u(z )& which is zero for T/>To, U(t) is also zero for 
T ~> To; for a long-range distribution, 0 ( 0  provides a direct representation 
of the tail. 

The solution of (30) by Laplace transforms is very simple in principle, 
and gives for the Laplace transform Z(p) of z(y) 

Zo(p) 
Z ( p )  - - -  (38) 

- v ( p )  

where V(p) is the Laplace transform of v(y). As in Section 4, the 
asymptotic behavior of z(y) is determined by the roots of the denominator 
of (38), and we shall find close parallels to the behavior for equal intervals. 

6. D I S T R I B U T I O N S  W I T H  A F IN ITE M E A N  V A L U E  

It is important to discuss the general behavior of the function V(p) as 
p decreases from + ~ through zero to - ~ .  First note that v(y) is positive 
for all y. Hence 

V(p) = i? v(y)e--PY dy (39) 

increases monotonically as p decreases. Thus, there can be only one real 
root of the equation V(p)= 1. 

I illustrate this behavior by reconsidering the case of equal intervals, 
for which 

u(t) = 6(t -- r) (40) 
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v(y) = 2e -~y, y <~ 
(41) 

= 0  y > 3  

2 
V(p) = p ~  [1 -- e -~{p+ ~')-] (42) 

For large, positive p, V(p) is small; as p decreases to zero, V(p) rises to 
(1-e- ; 'T) ;  and at p = 0 ,  it is therefore less than 1; for negative p, it 
continues its steady increase, becoming 1 at a unique negative value 
-7/3;  it then increases exponentially for large negative p. 

Let us now consider a general distribution with a finite cutoff %. From 
(37) we see that v(y) is zero for y >  %. The general pattern of behavior is 
s imtar to that for equal intervals, the value for p = 0 being given, from 
(39), by 

V(O) = v(y) dy (43) 

Using (31) and (36), we find that 

But 

O(t) dt] (44) 

O(t) at = [ tO(t)]~ + tu(t) dt = ? (45) 

which is the average length of interval. Therefore 

V(0)= 1 - e x p ( - 2 g )  (46) 

which is again less than 1. Hence V(p) reaches the value 1 for a negative 
value of p = -~7/?, and by analogy with (2) the asymptotic behavior of z(y) 
is an asymptotic decay, exp(-37y/?). The probability of the line [0, y]  
being covered tends to zero from large y, i.e., there is no percolating 
cluster. 

Now consider a distribution with a long tail of the form 

Then 

u(~) .-~ A/z = (47) 

S O(y)=  u ( r ) d r ~ A / ( s - 1 ) y  s ~ (48) 
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Reverting to Eq. (45), the integral on the left-hand side exists if s > 2 ,  
f is defined, and the equation remains valid. Hence the argument of the 
previous section can be repeated, and there is no percolating cluster. 

The argument can be extended to a distribution of the form 

u(r)~A/r2(ln ~)~ ( s>  1) (49) 

for which the integral of tu(t) converges to give a finite mean value f. We 
now have 

O(y) ~ A/-c(ln "r) s (50) 

and Eq. (45) is still valid. Again there is no percolating cluster for large y. 
The argument applies equally for 

A A 
u(z)~  2(ln~)(lnlnv) s, r 21n~( ln ln r ) ( l n ln lnv  ) ..... ( s > l )  (51) 

the general conclusion being that as long as the mean interval of the 
distribution is finite, z(y) decays exponentially for large y. 

7. D I S T R I B U T I O N S  W I T H  AN I N F I N I T E  M E A N  V A L U E  

For a distribution u(r) for which the integral of tu(t) does not 
converge, i.e., for which ~ becomes infinite, the argument of the previous 
section would indicate that V(0), which is equal to t - e x p ( - 2 f ) ,  becomes 
equal to 1. Hence, from (38) the dominating term in the asymptotic 
behavior of z(y) will no longer be an exponential decay, but a constant. 
Therefore the system will now have a percolating cluster. 

We can use the argument of Section 5 to specify in more detail what 
happens. Consider the probability that the point y is not covered by an 
event which has occurred in [ - Y o ,  0]. Using Eq. (33), we see that this 
probability is given by 

exp l -  y f;+ Y~ o(~) d~ ] (52) 

But for any of the distributions of the previous section for which "~ is 
infinite [(47) with s~<2; (49) and (51) with s~< 1] the integral of 0(4) 
diverges, and by choosing Yo sufficiently large, (52) can be made as small 
as we please. Hence there is probability 1 that the point y is covered by an 
event occurring before 0, i.e., that the interval [0, y]  is completely covered 
by such an event. This corresponds to a percolating cluster. 



Continuum Percolation 459 

We therefore find that with such distributions percolation occurs 
however small the value of 2, so that the system becomes critical however 
small the percolation probability. 

8. P R E V I O U S  R E S U L T S ,  LATT ICE M O D E L S  

The result of the preceding section was derived independently by 
Hall (22) using an alternative method. 3 Other previous work has been 
concerned largely with lattice models. Zhang e t  al., 04) who used a transfer 
matrix method to deal with long-range bond percolation in one dimension, 
found that, for a distribution of form (47), the critical concentration drops 
suddenly frdm 1 to 0 when s =  2. This conclusion was challenged by 
Schulman, (151 who derived a nonzero critical concentration when s = 2  
using a Monte Carlo method. 

There ca n  be differences of significance between lattice and continuous 
percolation models, as was demonstrated by Hall. (22) However, I should 
like to suggest that the origin of the above discrepancy may lie in a dif- 
ference of boundary conditions. For  continuous percolation it is reasonable 
to consider a Poisson process going on indefinitely, to select an arbitrary 
section [0, y ] ,  and examine whether it is covered or not. This treatment 
would be somewhat analogous to a one-dimensional lattice percolation 
problem with a cyclic boundary condition for which the partition function 
is given by the sum of the nth powers of the eigenvalues of a transfer 
matrix. 

It is more usual in lattice problems to deal with a finite system with 
edges. In standard problems with short-range effects, the two sets of 
boundary conditions give rise to the same bulk behavior, and differ only in 
their surface contributions. However, when long-range effects are present, 
one can no longer separate bulk and surface contributions, and the two 
problems differ more fundamentally. 

It should be possible to devise a continuum analogue of the edge 
boundary condition problem. A more fundamental approach would be to 
adapt the method used here for a continuum model to the needs of a lattice 
system in which generating functions would replace Laplace transforms. I 
shall endeavor to explore this approach in the near future. 

9. C O N C L U S I O N S  

The basic result of this work is a simple one: as long as the mean value 
of the interval length is finite, a one-dimensional percolation model does 

3 I am grateful to a referee for drawing my attention to this paper. 
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not  exhibit critical behavior. I have extended the probabil i ty distribution of 
intervals from 1/r s, to 1/v(ln r) ' ,  1/r2(ln r)(ln In ~)'...., and have found that  
critical behavior  occurs for all the latter distributions when and only when 
s ~< 2 for the power law and s ~< 1 for the rest of the chain. I have given a 
demonst ra t ion  that  there is critical behavior  whenever the mean interval 
length is infinite. 

A similar conclusion that  there is no critical behavior  when the mean 
force range is finite has been drawn by Ruelle (19) for the one-dimensional  
Ising model  with long-range forces. But the marginal  cases seem to give rise 
to much  more  interest and difficulty in the Ising problem. ~2~ 
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